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Development of Next -Gen RTG

A The development of Next-Gen RTG requires effective multi-physics
numerical modelling of various TEG configurations.

A Thermal-electric-mechanical coupled modeling required to accurately

predict module performance under all operational conditions during the
lifetime of the generator.

S50W = Next-Generation RTG

Y

500 W

Image: Radioisotope Power Systems fromhttps://rps.nasa.gov/resources/75/nasa -radioisotope-power-systems-program -
next-generation-rtg-study-summary-2017/. Accessed 9/28/2020.
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Fully -Coupled Thermal -Electric -
Mechanical Coupled Modeling

A To accomplish this, a robust, iterative numerical scheme was
developed using ANSYS

A A fully -coupled thermal-electric solver was developed in ANSYS CFX
that models all pertinent thermoelectric phenomena:
I Peltier, Joule, Thomson and Bridgman heats,

I Temperature-dependent material properties T thermal conductance and
electrical resistivity handled via Boussinesgapproximation

i Evolution of current density and electric potential via EM package
I Fully -implicit solver with electrical boundary conditions evolving with solution
I Validated to ANSYS Fluent/Thermalelectric and JPL analytics

A The results of this model served as the basis for ANSYS Mechanical
A The multi -step algorithm is as follows:
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Geometry Generation

A A TEG geometry is constructed in
Workbench DesignModeler using
parameterized construction points _ : |
(black dots), allowing for automatic ‘ ’ 4 ~
reconstruction

A Geometry sent to CFX to
determine thermal -electric
performance

A Temperature distribution serves
as basis of calculating
deformation via thermal
expansion as calculated via
temperature-dependent CTE
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Mapping to Mechanical

A The thermal data from CFX is passed into ANSYS Mechanical usmg
one-way FSI

Constructlon

A In order to capture the
P Points

deformation, locations of
construction points are
captured for regenerating the
model

A After a solution is obtained in
Mechanical, the geometry is
redefined deformation

A Domains are re-meshed and reimported into CFX; boundary
conditions are automatically applied

2020 Conference on Advanced Power
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Measuring Stress

A Stresses in the N and P legs are
measured as the trimmed-average
maximum principal stress along the
path

A Path is located 50 [Hm] from the hot
side interconnector through the center
of the lea
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Coupling Model

A To accomplish this coupling, a system
of Workbench and Mechanical macros
are used

A The Workbench macro adds additional
analysis cells

A The Mechanical macro adds imported
temperatures as load-steps

A Point locations are written to a log file
by the macro

A Convergence is determined using a
point movement threshold

B /=] Static Structural (D5)
b i .r"\. Analysis Settings
- ----- Constraints

- J Imported Load (C3)

----- v 21 Imported Body Temperature
----- . ] Imported Body Temperature 2
----- . 1 Imported Body Temperature 3
----- . ] Imported Body Temperature 4
----- J 1 Imported Body Temperature §
----- ", 1 Imported Body Temperature &
----- . 21 Imported Body Temperature 7]
= J Imported Load (G3)

----- v 1 Imported Body Temperature
----- . ] Imported Body Temperature 2
----- . 1 Imported Body Temperature 3
----- . ] Imported Body Temperature 4
----- ( 1 Imported Body Temperature §
----- ", ] Imported Body Temperature &
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= ‘ Imported Load (13)
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----- . ] Imported Body Temperature 2
----- . =1 Imported Body Temperature 3
----- . ] Imported Body Temperature 4
----- . =1 Imported Body Temperature 5
----- . ] Imported Body Temperature &

—_

MECHANICAL & MATERIALS SCIENCE

— 1

—_

FR—

----- . =1 Imported Body Temperature 7 |

— 2

2020 Conference on Advanced Power
Systems for Deep Space Exploration



Jet Propulsion Laboratory =l s m § [SWAJ|>|S|ON

MECHANICAL & MATERIALS SCIENCE

1, - . ._.I,.' . - -). i S
\ L HI\L.I,\][.\ of l ]U‘Hl)l”gh California Institute of Technology

Solution Methodology
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Unsegmented Single -Couple

A Algorithm prototyped and demonstrated on a generic unsegmented

single-couple:

P-type material: 14-1-11 Zintl
- 5x5x10 [mm]

N-type material: n-La,, Te,
- 5x5x10 [mm]

Metal Interconnect
- 1x5x10 [mm]

2020 Conference on Advanced Power
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Mechanical Grid Independence

A Grid Independence run with one -iteration unsegmented single-

couple:
Arch

Element Deformation % [N Leg Stress % |P LegStress | %
Size [mm] rmmi Diff [MPa] Diff [MPa] Diff
1 0.0560 - 17.7847 - 21.0684 -

0.5 0.0554 0.966 17.3772 2.291(19.4508 /.6/8
0.25 0.0552 0.37817.5606 1.056 [19.5687 0.606
0.125 0.0552 0.06317.5972 0.209]19.5496 0.097

A Note: for global energy imbalances to be sub1% for
thermoelectric phenomena, 40 [ m] required

2020 Conference on Advanced Power
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Results 1 Unsegmented

A Fixing the hot-side interconnector increases the maximum
stress experienced

Trimmean N-Leg Stress -- Unsegmented Trimmean P-Leg Stress -- Unsegmented
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Results 1 Unsegmented

A The fixed case experiences a less uniform stress distribution
along the path

N Path Stress -- Unsegmented 200K P Path Stress -- Unsegmented 200K
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Results 1 Unsegmented

A Stresses per constraint appear re_latively uniform o,
on the surface of the legs, especially as
temperature difference increases

A Maximum stresses occur within the volume of
the legs, as measured by the path

2020 Conference on Advanced Power
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Results 1 Unsegmented

A Thermoelectric performance relatively unchanged due to

deformation (recall Boussinesq)

A Relatively large deformation in unrestrained systems

Iteration Difference -- Unsegmented
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Segmented Single -Couple

A Analyzed potential Next-Gen segmented single couple under free
floating, spring -loaded, and constrained system configurations

P-hot material: 14-1-11Zintl
P-cold material: p-SKD
N-hot material: n-La, , Te,
N-cold material: n-SKD
Metal Interconnectors

Electrical Load Resistance:2 [m n |

Mechanical Convergence Criteria:

10 [Hm]
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A Stress magnitudes neatlinearly increasing with fixed and free
supports, due to lack of compliance in hot-side interconnector

M-Leg Trimmean Path Stress [MFPa]

16

Trimmean N-Leg Stress -- Segmented
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Results 1 Segmented

A Similar distributions to that of the unsegmented model

P Path Stress -- Segmented 200K
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Results 1 Segmented

A Stresses per constraint appear relatively uniform
on the surface of the legs

A Maximum stresses occur within the volume of
the legs, as measured by the path
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Results 1 Segmented

A As seen with unsegmented device, relatively no change of
thermoelectric performance due to deformation of couple

A Near-linear trend in upward deformation with increasing 3T

Iteration Difference -- Segmented

Hotside Upward Expansion -- Segmented
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Comparison with Single Iteration

A Unsegmented Single -Couple (800 [K], Free)

I Portion of height increase captured in first iteration: 100%
I Current portion: 99.12%
I Number of iterations to reach convergence: 3

A Segmented Single -Couple (800 [K], Free)
I Portion of height increase captured in first iteration: 100%
I Current portion: 98.99%

I Number of mechanical iterations to reach convergence:3
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Conclusions

1. Developed a robust, rapid Workbench multi -physics-coupled
model to evaluate inter-related thermoelectric and thermal -
mechanical behavior of Next-Gen designs

2. Mechanical deformation plays small role on thermoelectric -
performance of couple

3. Areas of high-stress exist at hotside interconnectors, suggesting
necessity for compliant structures

O Future work:

A Add additional construction points along legs and hot -side
Interconnector to capture non -linearity

A Build multi -couple remeshing models
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